咨询热线:
13101320222
网址:https://www.zhizijie.com
地址:重庆市高新区白市驿镇农科大道66号附33号
循环冷却水系统的稳定运行对于保证企业安全稳定生产具有重要的现实意义。当前循环冷却水系统的主要问题是水垢沉积、菌藻滋生和金属腐蚀。结垢和菌藻导致的微生物粘泥会造成循环冷却水系统换热效能下降与能耗增加,管道金属构件的腐蚀会造成物料泄露、生产停滞。为此,稳定水质是保障循环冷却水系统安全稳定运行、降低能耗和节约水资源的关键。
为了解决上述问题,研究人员提出了一系列的循环水水质控制技术,按照技术原理可分为被动式技术和主动式技术。被动式技术的核心是防止水垢在系统中生成,但成垢离子依然存在于循环水中,一旦外部条件发生改变,仍然存在系统结垢的风险。该类技术主要包括:化学药剂法、加硫酸法、CO2曝气法、石灰石软化法、酸碱平衡曝气法、高压静电法、磁化法/电磁法和超声波法。主动式技术的核心是从循环水中移除成垢离子。相比被动式技术,主动式技术可以彻底消除结垢风险;该类技术主要包括:机械清洗法/胶球清洗、离子交换树脂法、膜过滤法和电化学水垢去除技术。
电化学水垢去除技术作为典型的主动式技术,无需添加化学药剂,即可将水垢以固体形式从循环冷却水中析出,极大减少循化水结垢趋势,保证换热器表面清洁,保证换热效率,提高循环水浓缩倍数,减少排污量,有效节约水资源,符合当前国家生态环保产业政策及双碳政策,具有良好的市场前景。然而,电化学技术对循环水水质控制方面尚属于新兴工艺,尽管已经有一定程度的实际应用,但在实践过程中依然存在水质失稳、效力不足、成本偏高等问题,限制了该技术在工业循环水处理方面的推广应用。
一、循环水电化学除垢技术:
1. 电解过程:将特定的电解除垢装置(通常包含阳极和阴极)置于循环水系统中,当加载直流电后,水中的钙、镁等易形成水垢的金属离子会在电场作用下发生电迁移。阳极(正极)附近可能产生氧化反应,如氯离子会被氧化生成次氯酸根,起到杀菌消毒的作用。阴极(负极)附近则会产生还原反应,水分子在此处分解,释放出氢气和氢氧根离子。氢氧根离子与水中的钙离子、镁离子结合形成可溶性的氢氧化物,从而阻止它们进一步沉积形成硬垢。
2. 垢体去除:部分金属离子会直接在阴极表面沉积形成软垢,定期倒极或者通过机械刮除等方式将这些软垢从电极上清除。电解产生的气体(如氢气)有助于使阴极附近的垢体保持疏松状态,易于清洗。
3. 优点:不需添加大量化学药剂,减少了环境污染和污水处理成本。可以同时进行杀菌、灭藻、缓蚀等多种功能,对水质影响较小,处理效果稳定。运行成本相对较低,维护简便,且能有效延长循环水系统的使用寿命。
4. 实际应用:根据不同厂家的产品,例如南京卓越环保科技有限公司的循环水除垢系统,采用了特有的脉冲频率电吸附技术和分布式模块化电源控制(低电压、低电流、低功耗)安全稳定,能够解决传统电解处理器可能出现的极板结垢、电流效率低等问题。
5. 预处理要求:在实施电化学除垢前,需要对原水进行预处理,确保水质符合设备运行的要求,比如控制二氧化硅(SiO2)含量低于特定值,添加杀菌剂抑制微生物生长等。
循环水电化学除垢技术是一种可持续且高效的水处理解决方案,尤其适用于工业循环冷却水系统中防止和清除水垢的场合。
二、循环水电化学除垢技术的发展历史:
循环水电化学除垢技术的发展历史可以追溯到20世纪中后期,随着对环境保护和资源节约需求的增长,以及电化学理论和技术的进步,这项技术逐渐从实验室研究走向工业化应用。
早期探索阶段:
早在上世纪70年代,电化学技术开始应用于水处理领域,研究人员尝试通过电解过程改变水体中的离子活性,从而预防水垢生成。初期的研究和实验更多是基础理论层面的探讨,包括电解过程对水中离子的行为影响、电极材料的选择和设计等。
技术成型阶段:
到了80年代至90年代,随着对电化学反应机制理解的加深,科学家们研发出了第一代电化学除垢设备。以色列艾格锡(AIGATEC)公司在这一时期开发出的EST电化学水处理技术是其中的代表之一,该技术在全球范围内得到了应用验证,并在2008年后逐渐引入中国市场。
技术成熟与广泛应用阶段:
进入21世纪,循环水电化学除垢技术愈发成熟和完善。这些产品不仅能够有效防止和去除水垢,还具备杀藻、缓蚀、节水等功能,成为替代传统化学药剂处理的重要方式。
新技术和创新方向:
近年来,电化学除垢技术不断创新发展,新的电极材料、智能化控制技术和更加环保的处理模式层出不穷。例如,出现了独家倒极剥垢技术、高频自适应电源技术等,使得除垢设备运行更加高效、稳定和环保。此外,电化学技术与其他水处理技术的耦合也成为新的研究热点,以期实现更全面、更绿色的循环水处理目标。
综上所述,循环水电化学除垢技术历经数十年发展,从理论研究到实践应用,再到技术创新,逐步成长为工业循环水处理领域不可或缺的部分,并在节能减排、清洁生产方面发挥重要作用。
三、循环水设备为什么需要除垢:
1. 影响换热效率:水垢是由水中的钙、镁离子和其他矿物质在加热或冷却过程中析出形成的固态沉积物。水垢具有较差的导热性能,一旦在换热器、冷却器、锅炉等设备的热交换表面上形成一层厚厚的垢层,会极大地削弱设备的换热效能,导致能源消耗增加,生产效率下降。
2. 降低设备容量:水垢的累积会使得管道内径变小,从而限制了循环水的流动面积,降低了循环水量和流速,进而影响整个系统的冷却或加热能力。
3. 引发机械故障:严重的水垢沉积可能造成管道局部堵塞,甚至是完全堵塞,这不仅会导致设备无法正常运行,还可能迫使生产系统中断,需要进行紧急停机清理维护。
4. 加剧腐蚀问题:水垢下的局部腐蚀风险显著增加,垢下往往是氧扩散到达不了的区域,而垢层本身可以成为细菌、微生物繁殖的温床,加速金属设备的腐蚀过程,缩短设备使用寿命。
5. 安全性隐患:对于压力容器如锅炉等设备,不均匀的水垢分布可能导致受热面受热不均,增加爆管的风险,危及人员安全和设备完整性。
因此,保持循环水系统的清洁无垢状态,不仅是为了提升工作效率和节省能源,也是为了确保设备长期稳定运行和延长设备使用寿命,同时避免因结垢引起的安全事故和经济损失。
四、循环水电化学除垢技术几种方法:
1. 电化学氧化还原法: 在循环水系统中设置电化学反应器,通过加载直流电,使水中的钙、镁离子在电场作用下发生迁移,钙离子和镁离子在阴极区域与氢氧根离子结合形成可溶性的氢氧化物,防止了水垢的形成。同时,阳极反应可能产生氧化性物质,有助于杀菌、灭藻和缓蚀。
2. 电泳法:利用电泳原理,使水中带电荷的离子在电场作用下向相反电极移动,结垢离子聚集在电极表面,随后通过定期倒极或机械方式去除。
3. 电凝聚法(电浮法): 利用可溶性阳极(如铁或铝)在电解过程中产生的阳离子与水中的胶体粒子结合,形成较大的絮状物,同时阴极产生的氢气微泡使絮状物上浮,通过浮选方式将垢体从水中分离出来。
4. 脉冲电化学法: 通过脉冲电源向电极提供非连续的脉冲电流,既可以抑制水垢生成,又能防止电极表面的结垢,同时提高电化学反应的效率和稳定性。
5. 高频电磁场处理: 利用高频电磁场改变水分子的结构和运动状态,降低水垢离子的聚集和沉积速度,从而防止结垢。
6.多级复合电化学处理:结合以上多种电化学方法,通过多级反应器设计和优化,实现更加高效、全面的除垢、防腐、杀菌和水质稳定。
每个方法都有其适用范围和优缺点,实际应用时需根据循环水系统的具体工况、水质参数以及对环保、经济性等方面的需求综合选择。南京卓越环保科技有限公司开发的正是在对实际运行过程中表现的问题,经多次迭代最终采用的多级复合电化学处理技术,并叠加了高效太赫兹电磁阻垢模块。
五、循环水电化学除垢技术工作原理:
1.电解反应:当循环冷却水流经电化学除垢装置时,装置内部的电解槽被加载直流电,水分子在这种电场作用下会发生电解分解。在阴极(负极)处,水分子(H₂O)得到电子被还原,生成氢气(H₂)和氢氧根离子(OH⁻);而在阳极(正极)处,水中的部分离子(如氯离子Cl⁻)可能会被氧化,产生具有杀菌能力的次氯酸根或其他氧化物质。
电化学除垢技术在循环冷却水的水垢去除和杀菌灭藻等方面均能起到作用。相关反应分别发生在阴极和阳极界面区域中。
阴极区域有两个反应会产生OH-。实际过程中,由于阴极极化的原因,式(2)所示的析氢过程是OH-产生的主反应。溶液主体中HCO3-在克服电场迁移作用的前提下,依靠传质作用向阴极表面区域迁移,通过式(3)形成CO32-,而Ca2+/Mg2+在传质过程及电场迁移的综合作用下向阴极表面迁移,分别与CO32-和OH-反应生成沉淀(式(4)、式(5)),使硬度和碱度被去除。
重庆智渍洁环保科技有限公司(https://www.zhizijie.com)专注于工业清洗,化学清洗,干冰清洗,膜系统清洗,管件酸洗钝化,pig清洗,循环水系统清洗,换热器清洗,蒸发器清洗,冷凝器清洗,加热器清洗,管道清洗,油罐清洗,锅炉清洗,电力设备清洗,变压器清洗,凝汽器清洗等服务。